Thirty Essays on Geometric Graph Theory [electronic resource] / edited by János Pach.
Record details
- ISBN: 9781461401100
- Physical Description: XIII, 607 p. 282 illus. online resource.
- Publisher: New York, NY : Springer New York : 2013.
Search for related items by subject
Subject: | Mathematics. Combinatorics. Geometry. Mathematics. Discrete Mathematics. Geometry. Combinatorics. |
Electronic resources
Introduction | ||
1) B. Ãbrego - S. Fernández-Merchant - G. Salazar: The rectilinear crossing number of K_n: closing in (or are we?) | ||
2) E. Ackerman: The maximum number of tangencies among convex regions with a triangle-free intersection graph | ||
3) G. Aloupis - B. Ballinger - S. Collette - S. Langerman - A. Pór - D.R.Wood: Blocking coloured point sets | ||
4) M. Al-Jubeh - G. Barequet - M. Ishaque - D. Souvaine - Cs. D. Tóth - A. Winslow: Constrained tri-connected planar straight line graphs | ||
5) S. Buzaglo - R. Pinchasi - G. Rote: Topological hypergraphs | ||
6) J. Cano Vila - L. F. Barba - J. Urrutia - T. Sakai: On edge-disjoint empty triangles of point sets | ||
7) J. Cibulka - J. KynÄl - V. Mészáros - R. StolaÅ - P. Valtr: Universal sets for straight-line embeddings of bicolored graphs | ||
8) G. Di Battista - F. Frati: Drawing trees, outerplanar graphs, series-parallel graphs, and planar graphs in small area | ||
^ | ||
9) W. Didimo - G. Liotta: The crossing angle resolution in graph drawing | ||
10) A. Dumitrescu: Mover problems | ||
11) S. Felsner: Rectangle and square representations of planar graphs | ||
12) R. Fulek - N. Saeedi - D. Sariöz: Convex obstacle numbers of outerplanar graphs and bipartite permutation graphs | ||
13) R. Fulek - M. Pelsmajer - M. Schaefer - D. Å tefankoviÄ: Hanani-Tutte, monotone drawings, and level-planarity | ||
14) R. Fulek - A. Suk: On disjoint crossing families in geometric graphs | ||
15) M. Hoffmann - A. Schulz - M. Sharir - A. Sheffer - Cs. D. Tóth - E. Welzl: Counting plane graphs: flippability and its applications | ||
16) F. Hurtado - Cs. D. Tóth: Geometric graph augmentation: a generic perspective | ||
17) M. Kano - K. Suzuki: Discrete geometry on red and blue points in the plane lattice | ||
18) Gy. Károlyi: Ramsey-type problems for geometric graphs | ||
^ | ||
^^ | ||
19) Ch. Keller - M. Perles - E. Rivera-Campo - V. Urrutia-Galicia: Blockers for non-crossing spanning trees in complete geometric graphs | ||
20) A. V. Kostochka - K. G. Milans: Coloring clean and K_4-free circle graphs | ||
21) F. MoriÄ - D. Pritchard: Counting large distances in convex polygons: a computational approach | ||
22) A. Raigorodskii: Coloring distance graphs and graphs of diameters | ||
23) M. Schaefer: Realizability of graphs and linkages | ||
24) C. Smyth: Equilateral sets in l_dp | ||
25) A. Suk: A note on geometric 3-hypergraphs | ||
26) K. Swanepoel: Favourite distances in high dimensions | ||
27) M. Tancer: Intersection patterns of convex sets via simplicial complexes, a survey | ||
28) G. Tardos: Construction of locally plane graphs with many edges | ||
29) G. Tóth: A better bound for the pair-crossing number | ||
30) U. Wagner: Minors, embeddability, and extremal problems for hypergraphs.. | ||
^^ |