Catalog

Record Details

Catalog Search



Abstract algebra / David S. Dummit, Richard M. Foote.

Dummit, David S. (Author). Foote, Richard M. (Added Author).

Record details

  • ISBN: 0471433349
  • Physical Description: xii, 932 p. : il. ; 25 cm.
  • Edition: 3rd ed.
  • Publisher: Hoboken, N. J. : John Wiley & Sons, c2004.

Content descriptions

General Note:
Incluye índice.
Language Note:
English
Subject: Algebra abstracta.

Available copies

  • 1 of 1 copy available at IPICYT.

Holds

  • 0 current holds with 1 total copy.
Show Only Available Copies
Location Call Number / Copy Notes Barcode Shelving Location Status Due Date
Biblioteca Ipicyt QA162 D8 A2 2004 APL00309 Coleccion General Available -

Prefacexi
Preliminaries1
0.1. Basics1
0.2. Properties of the Integers
0.3. Z/nZ: The Integers Modulo n8
Part I. Group Theory13
1. Introduction to Groups16
1.1. Basic Axioms and Examples16
1.2. Dihedral Groups23
1.3. Symmetric Groups29
1.4. Matrix Groups34
1.5. The Quaternion Group36
1.6. Homomorphisms and Isomorphisms36
1.7. Group Actions41
2. Subgroups46
2.1. Definitions and Examples46
2.2. Centralizers and Normalizers, Stabilizers and Kernels49
2.3. Cyclic Groups and Cyclic Subgroups54
2.4. Subgroups Generated by Subsets of a Group61
2.5. The Lattice of Subgroups of a Group66
3. Quotient Groups and Homomorphisms73
3.1. Definitions and Examples73
3.2. More on Cosets and Lagrange's Theorem89
3.3. The Isomorphism Theorems97
3.4. Composition Series and the Holder Program101
3.5. Transpositions and the Alternating Group106
4. Group Actions112
4.1. Group Actions and Permutation Representations112
4.2. Groups Acting on Themselves by Left Multiplication-Cayley's Theorem118
4.3. Groups Acting on Themselves by Conjugation-The Class Equation122
4.4. Automorphism133
4.5. The Sylow Theorems139
4.6. The Simplicity of An149
5. Direct and Semidirect Products and Abelian Groups152
5.1. Direct Products142
5.2. The Fundamental Theorem of Finitely Generated Ableian Groups158
5.3. Table of Groups of Small Order167
5.4. Recognizing Direct Products169
5.5. Semidirect Products175
6. Further Topics in Group Theory188
6.1. p-groups, Nilpotent Groups, and Solvable Groups188
6.2. Applications in Groups of Medium Order201
6.3. A Word on Free Groups215
Part II. Ring Theory222
7. Introduction to Rings223
7.1. Basic Definitions and Exmaples223
7.2. Examples: Polynomial Rings, Matri Rings, and Group Rings233
7.3. Ring Homomorphisms and Quotinet Rings239
7.4. Properties of Ideals251
7.5. Rings of fractions260
7.6. The Chinese Remainder Theorem265
8. Euclidean Domains, Principla Ideal Domains and Unique Factorization Domains270
8.1. Euclidean Domains270
8.2. Principal Ideal Domains (P.I.D.s)279
8.3. Unique Factorization Domains (U.F.D.s)283
9. Polynomial Rings295
9.1. Definitions and Basic Properties295
9.2. Polynomial Rings over Fields I299
9.3. Polynomial Rings that are Unique Factorization Domains303
9.4. Irreducibility Criteria307
9.5. Polynomial rings over Fields II313
9.6. Polynomials in Several Variables over a Field and Grobner Bases315
Part III. Modules and Vector Spaces336
10. Introduction to Module Theory337
10.1. Basic Definitions and Examples337
10.2. Quotient Modules and Module Homomorphisms345
10.3. Generation of Modules, Direct Sums, and Free Modules351
10.4. Tensor Product of Modules359
10.5. Exact Sequences - Projective, Injective, and Flat Modules378
11. vector Spaces408
11.1. Definitions and Basic Theory408
11.2. The Matrix of a Linear Transformation415
11.3. Dual Vector Spaces431
11.4. Determinants435
11.5. Tensor Algebras, Symmetric and Exterior Algebras441
12. Modules over Principal Ideal Domains456
12.1. The Basic Theory458
12.2. The Rational Canonical From472
12.3. The Jordan Canonical From491
13. Field Theory510
13.1. Basic Theory of field Extensions510
13.2. Algebraic extensions520
13.3. Classical Straightedge and Compass Constructions531
13.4. Splitting Fields and Algebraic Closures536
13.5. Separable and Inseparable Extensions545
13.6. Cyclotomic Polynomials and Extensions552
14. Galios Theory558
14.1. Basic Definitions558
14.2. The Fundamental Theorem of Galios Theory567
14.3. Finite Fields585
14.4. Composite Extensions and Simple Extensions591
14.5. Cyclotomic Extensions and Albelian Extensions over Q596
14.6. Galois Groups of Polynomials606
14.7. Solvable and Radical Extensions: Insolvability of the Quintic625
14.8. Computation of the Galois Groups over Q640
14.9. Transcendental Extensions, Inseparable Extensions, Infinite Galois Groups645
Part V [sic]. An Introduction to Comutative Rings, Algebraic Geometry, and Homological Algebra655
15. Commutative Rings and Algebraic Geometry656
15.1. Noetherian Rings and Affine Algebraic Sets656
15.2. Radicals and Affine Varieties673
15.3. Integral Extensions and Hilbert's Nullstellensatz691
15.4. Localization706
15.5. The Prime Spectrum of a Ring731
16. Artinian Rings, Discrete Valuation Rings, and Dedekind Domains750
16.1. Artinian Rings750
16.2. Discrete Valuation Rings755
16.3. Dedekind Domains764
17. Introduction to Homological Algebra and Group Cohomology776
17.1. Introduction to Homological Algebra - Ext and Tor777
17.2. The Cohomology of Groups798
17.3. Crossed Homomorphisms and H1(G, A)814
17.4. Group Extensions, Factor Sets and H2(G, A)824
Part VI. Introduction to the Representation Theory of Finite Groups839
18. Representation Theory and Character Theory840
18.1. Linear Actions and Modules over Group Rings840
18.2. Wedderburn's Theorem and Some Consequences854
18.3. Character Theory and the Orthogonality Relations864
19. Examples and Applications of Character Theory880
19.1. Characters of Groups of Small Order880
19.2. Theorems of Burnside and Hall886
19.3. Introduction to the Theory of Induced Characters892
Appendix I. Cartesian Products and Zorn's Lemma905
Appendix II. Category Theory911
Index919

Additional Resources